Viscoelastic Immersed Boundary Methods for Zero Reynolds Number Flow
نویسندگان
چکیده
The immersed boundary method has been extensively used to simulate the motion of elastic structures immersed in a viscous fluid. For some applications, such as modeling biological materials, capturing internal boundary viscosity is important. We present numerical methods for simulating Kelvin-Voigt and standard linear viscoelastic structures immersed in zero Reynolds number flow. We find that the explicit time immersed boundary update is unconditionally unstable above a critical boundary to fluid viscosity ratio for a Kelvin-Voigt material. We also show there is a severe time step restriction when simulating a standard linear boundary with a small relaxation time scale using the same explicit update. A stable implicit method is presented to overcome these computation challenges. AMS subject classifications: 65M06, 65M12, 74F10, 76D07, 76M20
منابع مشابه
An unstructured solver for simulations of deformable particles in flows at arbitrary Reynolds numbers
As a step in the development of a numerical procedure able to perform parallel computations of the dynamics of capsules/cells in non-physiological configurations, a numerical method is developed and its validation is described. The fluid-structure interaction problem is solved using an immersed boundary method, adapted to an unstructured finite-volume flow solver thanks to the reproducing kerne...
متن کاملOn the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems
The immersed boundary method is both a mathematical formulation and a numerical scheme for problems involving the interaction of a viscous incompressible fluid and a (visco-)elastic structure. In [M.-C. Lai, Simulations of the flow past an array of circular cylinders as a test of the immersed boundary method, Ph.D. thesis, Courant Institute of Mathematical Sciences, New York University, 1998; M...
متن کاملValidation of an immersed thick boundary method for simulating fluid-structure interactions of deformable membranes
This paper constitutes an extension of the work of Mendez, Gibaud & Nicoud: An unstructured solver for simulations of deformable particles in flows at arbitrary Reynolds numbers, Journal of Computational Physics, 256(1): 465-483 (2014), for three-dimensional simulations of deformable membranes under flow. An immersed thick boundary method is used, combining the immersed boundary method with a t...
متن کاملPressure corrections for viscoelastic potential flow analysis of capillary instability
Linear stability analysis of the capillary instability of a viscoelastic liquid thread was carried out by Funada and Joseph (2003), who assumed irrotational flow but retained the effect of viscoelasticity (viscoelastic potential flow, VPF). They compared their results with the unapproximated normal mode solution of the linearized fully viscoelastic flow (FVF). The comparison showed that the gro...
متن کاملA Novel Similarity Solution of Turbulent Boundary Layer Flow over a Flat Plate
In this paper, the similarity solution of turbulent boundary layer flow on the flat plate with zero pressure gradients is presented. By employing similarity variables the governing partial differential equations are transformed to ordinary ones with inconsistent coefficients and solved numerically with the use of Runge–Kutta and shooting methods in conjunction with trial and error procedure. Fo...
متن کامل